## Electromagnetic Interactions in NonMagnetized and Magnetized Plasma Metamaterials and Photonics Crystals <br> Mark A. Cappelli <br> Stanford University

This work is supported by the Air Force Office of Scientific Research, with Dr. Mitat Birkan as Program Manager

## Outline

- Introduction
- Non-magnetized plasmas as elements in electromagnetically active systems
- Magnetized plasmas

- Some applications



## Introduction

## Photonic Crystals



Successive (Bragg) scattering of EM waves results in the formation of bandgaps

## Introduction

## Photonic Crystals




Successive (Bragg) scattering of EM waves results in the formation of bandgaps

## Introduction

## Photonic Crystals



Successive (Bragg) scattering of EM waves results in the formation of bandgaps

## Two-Dimensional Photonic Crystals <br> Array of Dielectric Columns

Square Lattice Array of Dielectric Rods


2D calculation (infinite size/square)


## Two-Dimensional Photonic Crystals <br> Array of Dielectric Columns

Square Lattice Array of Dielectric Rods


2D calculation (infinite size/square)


## Introduction

Metamaterials ( $\lambda \gg a$ )

C. Cai et al., 2020
D.R. Smith et al., 2000

Wave fields drive structure inductive and capacitive resonances to produce local effective properties $\varepsilon, \mu$

## Introduction

Metamaterials ( $\lambda \gg a$ )


Wave fields drive structure inductive and capacitive resonances to produce local effective properties $\varepsilon, \mu$

## Introduction

## Negative Refraction



## Invisibility Cloaks



Thanks to tiny, carefully placed metal rods and rings, metamaterials can bend light around an object. If light can't reach it, we can't see it. To date scientists have only been able to make things disappear in the microwave range of frequencies, but it wouldn't be a physics illustration without an observer or an apple

## Plasma Electromagnetics

## Bulk Plasma Dispersion



- Stop band below the plasma frequency
- "Fast waves" above the plasma frequency

Magnetized


- Multiple bandgaps emerge
- "Slow waves outside the light cone


## Plasma Electromagnetics

## Finite Size Plasma Electromagnetics

- Previous result applies for infinite medium
- EM "tunnels" through plasma slabs
- $n=c k / \omega=\sqrt{\varepsilon_{p}}=\sqrt{1-\omega_{p}^{2} / \omega^{2}}$ imaginary for $\omega / \omega_{p}<1$
- evanescent wave $\boldsymbol{E}_{o} e^{-i \omega t} \underbrace{e^{-\frac{\omega}{c}|\boldsymbol{n}| \cdot \boldsymbol{r}}}_{\text {decays exponentially }}$
- wave energy transmitted and reflected:*

$$
T=\frac{1}{\left|1+\frac{d}{2}\left(\frac{\sigma_{p}}{\varepsilon_{o} c}\right) \cos \theta\right|^{2}}
$$



Figure credit - B. Wang

# Plasma Loaded Photonic Crystal Vacancies Plasma-Tuning of Defect State Transmission 



- AC Hot-electrode discharge plasma (Ar-Hg)
- $250 \mathrm{~Pa}, \sim 150 \mathrm{~V} p \mathrm{p}, 0.2_{\text {RMs }} 1 \mathrm{~mm}$ quartz

empty cavity

$$
\omega_{R}=\omega_{o} \approx 1 / \tau
$$

Conceptually


$$
\omega_{Q F}<\omega_{o}
$$

$$
\omega_{P F}>\omega_{Q F}
$$




FDTD
Simulations

# Plasma Loaded Photonic Crystal Vacancies Plasma-Tuning of Defect State Transmission 

Experimental Results



# Plasma Loaded Photonic Crystal Vacancies Plasma-Tuning of Defect State Transmission 




Plasma density from measured shifts

Plasma Loaded Photonic Crystal Vacancies Plasma-Loaded 1D Photonic Crystal Defect


Simulated defect


Pai et al, 2019

## Plasma Loaded Photonic Crystal Vacancies Plasma-Loaded 1D Photonic Crystal Defect




## One-Dimensional Gratings (1D Photonic Crystals)

## Normal Excitation

- Series of plasma slabs (grating/1D photonic crystal) more complex

- $N=20$ slabs result in distinct bands due to successive scattering/interference (Bragg resonances)
- low plasma fill factor $a / \Lambda$ results in transmission below $\widetilde{\omega}_{p}=\frac{\omega_{p} \Lambda}{2 \pi c}$
- regions of anomalous dispersion ( $\mathrm{n}_{\mathrm{g}}<0$ ) not unique to plasma photonic crystals



## One-Dimensional Gratings (1D Photonic Crystals) Normal Excitation

- Plasma slabs serve as EM wave resonators


- Bouncing of electromagnetic waves within the space between plasma slabs builds up EM fields
- Finite number ( $\mathrm{N}=20$ ) allows leakage (tunneling)


## One-Dimensional Gratings (1D Photonic Crystals)

## Mechanical Analogy

- Incident EM Wave serves as a "forcing function" exciting Bragg modes within the resonator planes
- Tunneling leaks energy out of the
 resonator array
- Equation of motion for $m_{1}$ :

$$
\ddot{x}_{1}+\frac{b_{1}}{m} \dot{x}_{1}+\frac{k_{1}}{m} x=A \cos \omega t
$$

- Solution:

$$
\begin{gathered}
\left|x_{1}(\omega)\right|=\frac{A}{\sqrt{\left(\omega_{1}^{2}-\omega^{2}\right)^{2}+\gamma_{1}^{2} \omega^{2}}} \\
A=\frac{F_{o}}{m} \quad \gamma_{1}=\frac{b_{1}}{m} \quad \omega_{1}=\frac{k_{1}}{m}
\end{gathered}
$$

## One-Dimensional Gratings (1D Photonic Crystals)

## Oblique Excitation

- Interesting features are seen with oblique incidence angles


- E-field component across slabs in TM polarization (B-in plane)
- Mode splitting occurs when $\omega=\omega_{\text {Bragg }}=\omega_{p}$
- EM activity is seen below the light line for propagation along the $y$-direction (everything below represents slow-waves) - surface modes propagating along interface?


## One-Dimensional Gratings (1D Photonic Crystals)

## Resonant Electrostatic Plasmonic Oscillations

plasma slab


$$
P=\sigma_{C} / \varepsilon_{o}=n_{e} e x / \varepsilon_{o}
$$

$\sigma_{C}$ is geometry dependent

$$
\begin{aligned}
& \text { Sphere } \\
& \omega_{P R}=\omega_{p} / \sqrt{3}
\end{aligned}
$$

Cylinder
Cylinder

$$
\omega_{P R} \approx \omega_{p} / \sqrt{2}
$$



$$
\begin{gathered}
F=e P=m \ddot{x} \\
\ddot{x}=n_{e} e^{2} x / m_{e} \varepsilon_{o}
\end{gathered}
$$

## Electron Equation of Motion

$$
\ddot{x}=\omega_{p}^{2} x
$$

$$
\omega_{P R}=\sqrt{n_{e} e^{2} / m_{e} \varepsilon_{o}}
$$

## Plasmon Frequency

 of slab geometry| Electron Equation of |
| :---: |
| Motion |
| $\ddot{x}=\omega_{p}^{2} x$ |
| $\omega_{P R}=\sqrt{n_{e} e^{2} / m_{e} \varepsilon_{o}}$ |

## One-Dimensional Gratings (1D Photonic Crystals) Mechanical Resonator Analogy - Fano Resonance

- Resonant plasmonic oscillations in the slab represented by $m_{2}$ and $k_{2}$
- EM Field couples the two resonators

$\frac{x_{1}(\omega)}{A / \omega_{1}^{2}}=\frac{\omega_{1}^{2}\left(\omega_{2}^{2}-\omega^{2}+i \gamma_{2} \omega\right)}{\left(\omega_{1}^{2}-\omega^{2}+i \gamma_{1} \omega\right)\left(\omega_{2}^{2}-\omega^{2}+i \gamma_{2} \omega\right)-\omega_{12}^{2}}$

$A=\frac{F_{o}}{m} \quad \gamma_{2}=\gamma_{1}=\frac{b_{2}}{m} \quad \omega_{2}=\frac{k_{2}}{m} \quad \omega_{12}=\frac{k_{12}}{m} \quad$ For $m_{1}=m_{2}=m$
$\omega / \omega_{1}$


## Two-Dimensional Gratings (2D Photonic Crystals) Finite Array of Plasma Columns

- 2D photonic crystals of finite array size result in relatively shallow bandgaps
- Exacerbated by a lower refractive index (index contrast)



# Two-Dimensional Gratings (2D Photonic Crystals) Finite Array of Plasma Columns 

ExtractIng electrode $\qquad$


Sakai et al, 2005, 2007 (T ~80\% @74GHz)


Matlis and Corke, 2018 (T~70\% @ 16GHz)


Wang and Cappelli 2016 (T~15\% @ 4GHz)

This relatively low attenuation is due to either low plasma density, finite size, or poor crystal order

## Two-Dimensional Gratings (2D Photonic Crystals) Experiments - Variation in Plasma Density



- Photonic bands are relatively shallow ( $\sim 10-15 \mathrm{~dB}$ attenuation)
- Plasmonic attenuation seen at low frequency for relatively low $n_{e}$


# Two-Dimensional Gratings (2D Photonic Crystals) Experiments - Variation in Plasma Density 





- Photonic bands increase in depth due to higher contrast ratio (lower $\varepsilon_{p}$ )
- Plasmonic mode (d) shifts into resonance with (a); Fano splitting

Three-Dimensional Photonic Crystals

## Woodpile Configuration

Front View
Alternating orthogonal layers of 5 plasma columns

$n_{e}\left(c m^{-3}\right) \approx 5 \times 10^{9} I_{p}(m A)$.


## Three-Dimensional Photonic Crystals Woodpile Configuration

Simulations: ANSYS HFSS 16
B Wang, JA Rodríguez, MA Cappelli - Plasma Sources Science and Technology, 2019

$$
\left(n_{e}=6.1 \times 10^{17} \mathrm{~m}^{-3}\right)
$$

## Three-Dimensional Photonic Crystals Woodpile Configuration



Bragg Mode Only (Vertical)
Plasmonic Enhanced Bragg (Horizontal)

Combined Layers

## Plasma Metamaterial



Effective bulk medium of lower volumeaveraged plasma density

$$
n_{e f f} \approx \frac{\pi d^{2}}{4 a^{2}} n_{e}
$$

Plasma Array as an Effective Medium
Plasma Metamaterial


Plasma Array as an Effective Medium
Plasma Metamaterial



$$
n=\sqrt{-\left|\mu_{e f f}\right|} \cdot \sqrt{-\left|\varepsilon_{P}\right|}=-\left|\mu_{e f f}\right| \cdot\left|\varepsilon_{P}\right|
$$

## Plasma Array as an Effective Medium

## Double-Negative Medium: Experimental Verification

Split Ring Array Alone


Plasma


Peak in Transmission due to Double Negative Region


Plasma and Split Ring Array

## Invisibility Cloaks

## Switchable Invisibility Cloaks using Plasma Mantles

$$
P=\left(\varepsilon-\varepsilon_{o}\right) E
$$



CST Simulations


- incident field induced radiating dipole in core and shell medium
- $\lambda \gg D$ first (dipole) term dominates
- Surrounding negative epsilon medium cancels dipole of dielectric core
- Design shell of plasma columns that provides the necessary $\varepsilon_{e f f}$


Plasma Array as an Effective Medium Plasma Functional Metamaterial


Objective: Redirect Waves
Objective: Demultiplex

## Plasma Array as an Effective Medium Plasma Computer



Number of Sampled States


J. Rodríguez, et al., Physical Review Applied 16 (1), 014023, 2021

Magnetized Plasma Electromagnetics

## Gyrotropic Plasma Rods

## Scattering from Magnetized Plasma Discharges



- Magnetized plasma columns exhibit asymmetric scattering*
- Scattering depends on plasma and field properties $\phi_{s}\left(f_{p}, f_{c}, v\right)$
- Experiments needed to confirm scattering behavior
*Valagiannopoulos et al., Nanomaterials and Nanotechnology 8: 1-10 (2018)


## Gyrotropic Plasma Rods

## Experimental Measurements



Setup
(15 mm diameter discharge tube)


3D Rendering of Measured Fields

Houriez et al., Appl. Phys. Lett. 120, 223101 (2022)

## Gyrotropic Plasma Rods

## Results



$$
\begin{gathered}
B_{o}=58 \mathrm{mT} \\
\omega / 2 \pi=4.43 \mathrm{GHz} \\
\omega_{c} / 2 \pi=1.34 \mathrm{GHz} \\
\rightarrow \begin{array}{l}
\omega_{p} / 2 \pi=8.14 \mathrm{GHz} \\
v_{c}=1.34 \mathrm{GHz}
\end{array}
\end{gathered}
$$

$$
\left(n_{e}=8.2 \times 10^{17} \mathrm{~m}^{-3}\right)
$$

## Non-Reciprocal Devices

## Tunable Plasma Circulator



## Non-Reciprocal Devices

Tunable Plasma Circulator Performance
Plasma (60V) and B (47mT)


## Magnetized Plasma Photonic Crystals <br> Edge State Propagation




## Magnetized Plasma Photonic Crystals

## Photonic Crystal Design and Edge State Confirmation



## Magnetized Plasma Photonic Crystals

## Experimental Validation of Non-Reciprocal Propagation



## Thank You for your patience and for your questions!

This work is supported by the Air Force Office of Scientific Research, with Dr. Mitat Birkan as Program Manager

